Jupyter Notebook

Bird’s eye view#

Here, you’ll backtrace file transformations through notebooks, pipelines & app uploads in a research project based on Schmidt22.

It’s a mix of a guide & a demo usecase.

Why should I care about data lineage?

Data lineage enables to trace the origin of biological insights, verify experimental outcomes, meet regulatory standards, and increase the reproducibility & reliability research.

While tracking data lineage is easier when it’s governed by deterministic pipelines, it becomes hard when its governed by interactive human-driven analyses.

This is where LaminDB fills a gap in the tools space.

Setup#

We need an instance:

!lamin init --storage ./mydata
Hide code cell output
💡 creating schemas: core==0.45.3 
🌱 saved: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-16 21:59:21)
🌱 saved: Storage(id='IWuJyZVy', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata', type='local', updated_at=2023-08-16 21:59:21, created_by_id='DzTjkKse')
✅ loaded instance: testuser1/mydata
💡 did not register local instance on hub (if you want, call `lamin register`)

Import lamindb:

import lamindb as ln
✅ loaded instance: testuser1/mydata (lamindb 0.50.5)

We’ll need toy data:

assert ln.setup.settings.user.handle == "testuser1"
bfx_run_output = ln.dev.datasets.dir_scrnaseq_cellranger(
    "perturbseq", basedir=ln.settings.storage, output_only=False
)
ln.track(ln.Transform(name="Chromium 10x upload", type="pipeline"))
ln.File(bfx_run_output.parent / "fastq/perturbseq_R1_001.fastq.gz").save()
ln.File(bfx_run_output.parent / "fastq/perturbseq_R2_001.fastq.gz").save()
ln.setup.login("testuser2")
Hide code cell output
🌱 saved: Transform(id='o8CUeNo7nkprz8', name='Chromium 10x upload', stem_id='o8CUeNo7nkpr', version='0', type='pipeline', updated_at=2023-08-16 21:59:22, created_by_id='DzTjkKse')
🌱 saved: Run(id='7jOHdO6bziRTcnlUK7qX', run_at=2023-08-16 21:59:22, transform_id='o8CUeNo7nkprz8', created_by_id='DzTjkKse')
💡 file in storage '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata' with key 'fastq/perturbseq_R1_001.fastq.gz'
💡 file in storage '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata' with key 'fastq/perturbseq_R2_001.fastq.gz'
✅ logged in with email testuser2@lamin.ai and id bKeW4T6E
🔶 record with similar name exist! did you mean to load it?
id __ratio__
name
Test User1 DzTjkKse 90.0
🌱 saved: User(id='bKeW4T6E', handle='testuser2', email='testuser2@lamin.ai', name='Test User2', updated_at=2023-08-16 21:59:23)

Track a bioinformatics pipeline#

When working with a pipeline, we’ll register it before running it.

This only happens once and could be done by anyone on your team.

transform = ln.Transform(name="Cell Ranger", version="7.2.0", type="pipeline")
ln.User.filter().df()
handle email name updated_at
id
DzTjkKse testuser1 testuser1@lamin.ai Test User1 2023-08-16 21:59:21
bKeW4T6E testuser2 testuser2@lamin.ai Test User2 2023-08-16 21:59:23
transform
Transform(id='YL2Qjuqj3p5PsM', name='Cell Ranger', stem_id='YL2Qjuqj3p5P', version='7.2.0', type='pipeline', created_by_id='bKeW4T6E')
ln.track(transform)
🌱 saved: Transform(id='YL2Qjuqj3p5PsM', name='Cell Ranger', stem_id='YL2Qjuqj3p5P', version='7.2.0', type='pipeline', updated_at=2023-08-16 21:59:23, created_by_id='bKeW4T6E')
🌱 saved: Run(id='QJqwvGBQVMXPvvbYsl2W', run_at=2023-08-16 21:59:23, transform_id='YL2Qjuqj3p5PsM', created_by_id='bKeW4T6E')

Now, let’s stage a few files from an instrument upload:

files = ln.File.filter(key__startswith="fastq/perturbseq").all()
filepaths = [file.stage() for file in files]
💡 adding file q3cJ3SSDwMFEnMjjlcB3 as input for run QJqwvGBQVMXPvvbYsl2W, adding parent transform o8CUeNo7nkprz8
💡 adding file CqvJ44vzSBWQVSdXIdcX as input for run QJqwvGBQVMXPvvbYsl2W, adding parent transform o8CUeNo7nkprz8

Assume we processed them and obtained 3 output files in a folder 'filtered_feature_bc_matrix':

output_files = ln.File.from_dir("./mydata/perturbseq/filtered_feature_bc_matrix/")
ln.save(output_files)
Hide code cell output
✅ created 3 files from directory using storage /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata and key = perturbseq/filtered_feature_bc_matrix/
🌱 storing file 'F4MS8ehlJiBGlFRljNPl' with key 'perturbseq/filtered_feature_bc_matrix/features.tsv.gz'
🌱 storing file 'qlhwSf74ngeLURGwQ9p6' with key 'perturbseq/filtered_feature_bc_matrix/matrix.mtx.gz'
🌱 storing file 'ZOL5CJlojxzMw2TEJGjA' with key 'perturbseq/filtered_feature_bc_matrix/barcodes.tsv.gz'

Let’s look at the data lineage at this stage:

output_files[0].view_lineage()
https://d33wubrfki0l68.cloudfront.net/9642b0e69da02d6dd52119c6358d522b1ed8d4fe/db428/_images/f5807f8219ae3dc5874b7466494644ac5484367e37acdb541d61b55726d4025d.svg

And let’s keep running the Cell Ranger pipeline in the background.

Hide code cell content
transform = ln.Transform(
    name="Preprocess Cell Ranger outputs", version="2.0", type="pipeline"
)
ln.track(transform)
[f.stage() for f in output_files]
filepath = ln.dev.datasets.schmidt22_perturbseq(basedir=ln.settings.storage)
file = ln.File(filepath, description="perturbseq counts")
file.save()
🌱 saved: Transform(id='GlOTy7VbChAJ0b', name='Preprocess Cell Ranger outputs', stem_id='GlOTy7VbChAJ', version='2.0', type='pipeline', updated_at=2023-08-16 21:59:24, created_by_id='bKeW4T6E')
🌱 saved: Run(id='M0L3ec0jJjkt9O0u83Cx', run_at=2023-08-16 21:59:24, transform_id='GlOTy7VbChAJ0b', created_by_id='bKeW4T6E')
💡 adding file F4MS8ehlJiBGlFRljNPl as input for run M0L3ec0jJjkt9O0u83Cx, adding parent transform YL2Qjuqj3p5PsM
💡 adding file qlhwSf74ngeLURGwQ9p6 as input for run M0L3ec0jJjkt9O0u83Cx, adding parent transform YL2Qjuqj3p5PsM
💡 adding file ZOL5CJlojxzMw2TEJGjA as input for run M0L3ec0jJjkt9O0u83Cx, adding parent transform YL2Qjuqj3p5PsM
💡 file in storage '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata' with key 'schmidt22_perturbseq.h5ad'
💡 file is AnnDataLike, consider using File.from_anndata() to link var_names and obs.columns as features

Track app upload & analytics#

The hidden cell below simulates additional analytic steps including:

  • uploading phenotypic screen data

  • scRNA-seq analysis

  • analyses of the integrated datasets

Hide code cell content
# app upload
ln.setup.login("testuser1")
transform = ln.Transform(name="Upload GWS CRISPRa result", type="app")
ln.track(transform)

# upload and analyze the GWS data
filepath = ln.dev.datasets.schmidt22_crispra_gws_IFNG(ln.settings.storage)
file = ln.File(filepath, description="Raw data of schmidt22 crispra GWS")
file.save()
ln.setup.login("testuser2")
transform = ln.Transform(name="GWS CRIPSRa analysis", type="notebook")
ln.track(transform)

file_wgs = ln.File.filter(key="schmidt22-crispra-gws-IFNG.csv").one()
df = file_wgs.load().set_index("id")
hits_df = df[df["pos|fdr"] < 0.01].copy()
file_hits = ln.File(hits_df, description="hits from schmidt22 crispra GWS")
file_hits.save()
✅ logged in with email testuser1@lamin.ai and id DzTjkKse
🌱 saved: Transform(id='6LHjNUWqkCa8z8', name='Upload GWS CRISPRa result', stem_id='6LHjNUWqkCa8', version='0', type='app', updated_at=2023-08-16 21:59:26, created_by_id='DzTjkKse')
🌱 saved: Run(id='misq3GBByruI8WTGqOvJ', run_at=2023-08-16 21:59:26, transform_id='6LHjNUWqkCa8z8', created_by_id='DzTjkKse')
💡 file in storage '/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata' with key 'schmidt22-crispra-gws-IFNG.csv'
✅ logged in with email testuser2@lamin.ai and id bKeW4T6E
🌱 saved: Transform(id='id9YimYt3pIRz8', name='GWS CRIPSRa analysis', stem_id='id9YimYt3pIR', version='0', type='notebook', updated_at=2023-08-16 21:59:28, created_by_id='bKeW4T6E')
🌱 saved: Run(id='dRLETvJddC64NtIPkIdq', run_at=2023-08-16 21:59:28, transform_id='id9YimYt3pIRz8', created_by_id='bKeW4T6E')
💡 adding file SOSzRwtqj9gnhMF7F0Fq as input for run dRLETvJddC64NtIPkIdq, adding parent transform 6LHjNUWqkCa8z8
💡 file will be copied to default storage upon `save()` with key 'VuUcmkNkygNaQAJcC59i.parquet'
💡 file is a dataframe, consider using File.from_df() to link column names as features
🌱 storing file 'VuUcmkNkygNaQAJcC59i' with key '.lamindb/VuUcmkNkygNaQAJcC59i.parquet'

Let’s see how the data lineage of this looks:

file = ln.File.filter(description="hits from schmidt22 crispra GWS").one()
file.view_lineage()
https://d33wubrfki0l68.cloudfront.net/848dd502d989644546ffe10afd5b9732f2f79d6d/5384a/_images/cfb6c4538535e62542d0231987696b6567ca36ced0e5bb5005fdb6cf0919e3dc.svg

In the backgound, somebody integrated and analyzed the outputs of the app upload and the Cell Ranger pipeline:

Hide code cell content
# Let us add analytics on top of the cell ranger pipeline and the phenotypic screening
transform = ln.Transform(
    name="Perform single cell analysis, integrating with CRISPRa screen",
    type="notebook",
)
ln.track(transform)

file_ps = ln.File.filter(description__icontains="perturbseq").one()
adata = file_ps.load()
screen_hits = file_hits.load()
import scanpy as sc

sc.tl.score_genes(adata, adata.var_names.intersection(screen_hits.index).tolist())
filesuffix = "_fig1_score-wgs-hits.png"
sc.pl.umap(adata, color="score", show=False, save=filesuffix)
filepath = f"figures/umap{filesuffix}"
file = ln.File(filepath, key=filepath)
file.save()
filesuffix = "fig2_score-wgs-hits-per-cluster.png"
sc.pl.matrixplot(
    adata, groupby="cluster_name", var_names=["score"], show=False, save=filesuffix
)
filepath = f"figures/matrixplot_{filesuffix}"
file = ln.File(filepath, key=filepath)
file.save()
🌱 saved: Transform(id='WcjRp2t7TEuyz8', name='Perform single cell analysis, integrating with CRISPRa screen', stem_id='WcjRp2t7TEuy', version='0', type='notebook', updated_at=2023-08-16 21:59:28, created_by_id='bKeW4T6E')
🌱 saved: Run(id='04IPweATnqEZroiklIYq', run_at=2023-08-16 21:59:28, transform_id='WcjRp2t7TEuyz8', created_by_id='bKeW4T6E')
💡 adding file r0qE8pTcEoF7KQubMSdP as input for run 04IPweATnqEZroiklIYq, adding parent transform GlOTy7VbChAJ0b
💡 adding file VuUcmkNkygNaQAJcC59i as input for run 04IPweATnqEZroiklIYq, adding parent transform id9YimYt3pIRz8
WARNING: saving figure to file figures/umap_fig1_score-wgs-hits.png
💡 file will be copied to default storage upon `save()` with key 'figures/umap_fig1_score-wgs-hits.png'
🌱 storing file 'HHgQhiBtpBL5axw1tQj2' with key 'figures/umap_fig1_score-wgs-hits.png'
WARNING: saving figure to file figures/matrixplot_fig2_score-wgs-hits-per-cluster.png
💡 file will be copied to default storage upon `save()` with key 'figures/matrixplot_fig2_score-wgs-hits-per-cluster.png'
🌱 storing file '9JJTJD1CfBfb4JVCl1W9' with key 'figures/matrixplot_fig2_score-wgs-hits-per-cluster.png'

The outcome of it are a few figures stored as image files. Let’s query one of them and look at the data lineage:

Track notebooks#

We’d now like to track the current Jupyter notebook to continue the work:

ln.track()
💡 notebook imports: lamindb==0.50.5 scanpy==1.9.3
🌱 saved: Transform(id='1LCd8kco9lZUz8', name='Bird's eye view', short_name='birds-eye', stem_id='1LCd8kco9lZU', version='0', type=notebook, updated_at=2023-08-16 21:59:30, created_by_id='bKeW4T6E')
🌱 saved: Run(id='iIlHVKcd9Ii3UrKomCV7', run_at=2023-08-16 21:59:30, transform_id='1LCd8kco9lZUz8', created_by_id='bKeW4T6E')

Visualize data lineage#

Let’s load one of the plots:

file = ln.File.filter(key__contains="figures/matrixplot").one()
file.stage()
💡 adding file 9JJTJD1CfBfb4JVCl1W9 as input for run iIlHVKcd9Ii3UrKomCV7, adding parent transform WcjRp2t7TEuyz8
PosixPath('/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/figures/matrixplot_fig2_score-wgs-hits-per-cluster.png')

We see that the image file is tracked as an input of the current notebook. The input is highlighted, the notebook follows at the bottom:

file.view_lineage()
https://d33wubrfki0l68.cloudfront.net/e2e1a690353e061893d6bcc28954800ce47da882/f92fc/_images/451966ad30cbb8093d8db531ac734ddd2da73168084a21edd9ce623609402000.svg

Alternatively, we can also purely look at the sequence of transforms and ignore the files:

transform = ln.Transform.search("Bird's eye view", return_queryset=True).first()
transform.parents.df()
name short_name stem_id version type reference updated_at created_by_id
id
WcjRp2t7TEuyz8 Perform single cell analysis, integrating with... None WcjRp2t7TEuy 0 notebook None 2023-08-16 21:59:30 bKeW4T6E
transform.view_parents()
https://d33wubrfki0l68.cloudfront.net/5203cd03ba492c408ac7461e5d6651665558df3f/dce94/_images/a7ecd232c5daae0751069d467e6e581a037613b8dabf3b1164da33a084013a2a.svg

Understand runs#

We tracked pipeline and notebook runs through run_context, which stores a Transform and a Run record as a global context.

File objects are the inputs and outputs of runs.

What if I don’t want a global context?

Sometimes, we don’t want to create a global run context but manually pass a run when creating a file:

run = ln.Run(transform=transform)
ln.File(filepath, run=run)
When does a file appear as a run input?

When accessing a file via stage(), load() or backed(), two things happen:

  1. The current run gets added to file.input_of

  2. The transform of that file gets added as a parent of the current transform

You can then switch off auto-tracking of run inputs if you set ln.settings.track_run_inputs = False: Can I disable tracking run inputs?

You can also track run inputs on a case by case basis via is_run_input=True, e.g., here:

file.load(is_run_input=True)

Query by provenance#

We can query or search for the notebook that created the file:

transform = ln.Transform.search("GWS CRIPSRa analysis", return_queryset=True).first()

And then find all the files created by that notebook:

ln.File.filter(transform=transform).df()
storage_id key suffix accessor description version initial_version_id size hash hash_type transform_id run_id updated_at created_by_id
id
VuUcmkNkygNaQAJcC59i IWuJyZVy None .parquet DataFrame hits from schmidt22 crispra GWS None None 18368 yw5f-kMLJhaNhdEF-lhxOQ md5 id9YimYt3pIRz8 dRLETvJddC64NtIPkIdq 2023-08-16 21:59:28 bKeW4T6E

Which transform ingested a given file?

file = ln.File.filter().first()
file.transform
Transform(id='o8CUeNo7nkprz8', name='Chromium 10x upload', stem_id='o8CUeNo7nkpr', version='0', type='pipeline', updated_at=2023-08-16 21:59:22, created_by_id='DzTjkKse')

And which user?

file.created_by
User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-16 21:59:26)

Which transforms were created by a given user?

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser2).df()
name short_name stem_id version type reference updated_at created_by_id
id
YL2Qjuqj3p5PsM Cell Ranger None YL2Qjuqj3p5P 7.2.0 pipeline None 2023-08-16 21:59:23 bKeW4T6E
GlOTy7VbChAJ0b Preprocess Cell Ranger outputs None GlOTy7VbChAJ 2.0 pipeline None 2023-08-16 21:59:25 bKeW4T6E
id9YimYt3pIRz8 GWS CRIPSRa analysis None id9YimYt3pIR 0 notebook None 2023-08-16 21:59:28 bKeW4T6E
WcjRp2t7TEuyz8 Perform single cell analysis, integrating with... None WcjRp2t7TEuy 0 notebook None 2023-08-16 21:59:30 bKeW4T6E
1LCd8kco9lZUz8 Bird's eye view birds-eye 1LCd8kco9lZU 0 notebook None 2023-08-16 21:59:30 bKeW4T6E

Which notebooks were created by a given user?

ln.Transform.filter(created_by=users.testuser2, type="notebook").df()
name short_name stem_id version type reference updated_at created_by_id
id
id9YimYt3pIRz8 GWS CRIPSRa analysis None id9YimYt3pIR 0 notebook None 2023-08-16 21:59:28 bKeW4T6E
WcjRp2t7TEuyz8 Perform single cell analysis, integrating with... None WcjRp2t7TEuy 0 notebook None 2023-08-16 21:59:30 bKeW4T6E
1LCd8kco9lZUz8 Bird's eye view birds-eye 1LCd8kco9lZU 0 notebook None 2023-08-16 21:59:30 bKeW4T6E

We can also view all recent additions to the entire database:

ln.view()
Hide code cell output
File

storage_id key suffix accessor description version initial_version_id size hash hash_type transform_id run_id updated_at created_by_id
id
9JJTJD1CfBfb4JVCl1W9 IWuJyZVy figures/matrixplot_fig2_score-wgs-hits-per-clu... .png None None None None 28814 JYIPcat0YWYVCX3RVd3mww md5 WcjRp2t7TEuyz8 04IPweATnqEZroiklIYq 2023-08-16 21:59:30 bKeW4T6E
HHgQhiBtpBL5axw1tQj2 IWuJyZVy figures/umap_fig1_score-wgs-hits.png .png None None None None 118999 laQjVk4gh70YFzaUyzbUNg md5 WcjRp2t7TEuyz8 04IPweATnqEZroiklIYq 2023-08-16 21:59:29 bKeW4T6E
VuUcmkNkygNaQAJcC59i IWuJyZVy None .parquet DataFrame hits from schmidt22 crispra GWS None None 18368 yw5f-kMLJhaNhdEF-lhxOQ md5 id9YimYt3pIRz8 dRLETvJddC64NtIPkIdq 2023-08-16 21:59:28 bKeW4T6E
SOSzRwtqj9gnhMF7F0Fq IWuJyZVy schmidt22-crispra-gws-IFNG.csv .csv None Raw data of schmidt22 crispra GWS None None 1729685 cUSH0oQ2w-WccO8_ViKRAQ md5 6LHjNUWqkCa8z8 misq3GBByruI8WTGqOvJ 2023-08-16 21:59:26 DzTjkKse
r0qE8pTcEoF7KQubMSdP IWuJyZVy schmidt22_perturbseq.h5ad .h5ad AnnData perturbseq counts None None 20659936 la7EvqEUMDlug9-rpw-udA md5 GlOTy7VbChAJ0b M0L3ec0jJjkt9O0u83Cx 2023-08-16 21:59:25 bKeW4T6E
ZOL5CJlojxzMw2TEJGjA IWuJyZVy perturbseq/filtered_feature_bc_matrix/barcodes... .tsv.gz None None None None 6 4c9GlDhpkQHxUfapmIfHZA md5 YL2Qjuqj3p5PsM QJqwvGBQVMXPvvbYsl2W 2023-08-16 21:59:23 bKeW4T6E
qlhwSf74ngeLURGwQ9p6 IWuJyZVy perturbseq/filtered_feature_bc_matrix/matrix.m... .mtx.gz None None None None 6 h5C1MAwIZs8TohL2IiTQLw md5 YL2Qjuqj3p5PsM QJqwvGBQVMXPvvbYsl2W 2023-08-16 21:59:23 bKeW4T6E
F4MS8ehlJiBGlFRljNPl IWuJyZVy perturbseq/filtered_feature_bc_matrix/features... .tsv.gz None None None None 6 fLIi4pGVmfs4RNdVj4ZQfw md5 YL2Qjuqj3p5PsM QJqwvGBQVMXPvvbYsl2W 2023-08-16 21:59:23 bKeW4T6E
CqvJ44vzSBWQVSdXIdcX IWuJyZVy fastq/perturbseq_R2_001.fastq.gz .fastq.gz None None None None 6 8uh99YnFmsM1K32v2DZlwA md5 o8CUeNo7nkprz8 7jOHdO6bziRTcnlUK7qX 2023-08-16 21:59:22 DzTjkKse
q3cJ3SSDwMFEnMjjlcB3 IWuJyZVy fastq/perturbseq_R1_001.fastq.gz .fastq.gz None None None None 6 Hob7PrSo6P4cTrzDAZlcpQ md5 o8CUeNo7nkprz8 7jOHdO6bziRTcnlUK7qX 2023-08-16 21:59:22 DzTjkKse
Run

transform_id run_at created_by_id reference reference_type
id
7jOHdO6bziRTcnlUK7qX o8CUeNo7nkprz8 2023-08-16 21:59:22 DzTjkKse None None
QJqwvGBQVMXPvvbYsl2W YL2Qjuqj3p5PsM 2023-08-16 21:59:23 bKeW4T6E None None
M0L3ec0jJjkt9O0u83Cx GlOTy7VbChAJ0b 2023-08-16 21:59:24 bKeW4T6E None None
misq3GBByruI8WTGqOvJ 6LHjNUWqkCa8z8 2023-08-16 21:59:26 DzTjkKse None None
dRLETvJddC64NtIPkIdq id9YimYt3pIRz8 2023-08-16 21:59:28 bKeW4T6E None None
04IPweATnqEZroiklIYq WcjRp2t7TEuyz8 2023-08-16 21:59:28 bKeW4T6E None None
iIlHVKcd9Ii3UrKomCV7 1LCd8kco9lZUz8 2023-08-16 21:59:30 bKeW4T6E None None
Storage

root type region updated_at created_by_id
id
IWuJyZVy /home/runner/work/lamin-usecases/lamin-usecase... local None 2023-08-16 21:59:21 DzTjkKse
Transform

name short_name stem_id version type reference updated_at created_by_id
id
1LCd8kco9lZUz8 Bird's eye view birds-eye 1LCd8kco9lZU 0 notebook None 2023-08-16 21:59:30 bKeW4T6E
WcjRp2t7TEuyz8 Perform single cell analysis, integrating with... None WcjRp2t7TEuy 0 notebook None 2023-08-16 21:59:30 bKeW4T6E
id9YimYt3pIRz8 GWS CRIPSRa analysis None id9YimYt3pIR 0 notebook None 2023-08-16 21:59:28 bKeW4T6E
6LHjNUWqkCa8z8 Upload GWS CRISPRa result None 6LHjNUWqkCa8 0 app None 2023-08-16 21:59:26 DzTjkKse
GlOTy7VbChAJ0b Preprocess Cell Ranger outputs None GlOTy7VbChAJ 2.0 pipeline None 2023-08-16 21:59:25 bKeW4T6E
YL2Qjuqj3p5PsM Cell Ranger None YL2Qjuqj3p5P 7.2.0 pipeline None 2023-08-16 21:59:23 bKeW4T6E
o8CUeNo7nkprz8 Chromium 10x upload None o8CUeNo7nkpr 0 pipeline None 2023-08-16 21:59:22 DzTjkKse
User

handle email name updated_at
id
bKeW4T6E testuser2 testuser2@lamin.ai Test User2 2023-08-16 21:59:28
DzTjkKse testuser1 testuser1@lamin.ai Test User1 2023-08-16 21:59:26
Hide code cell content
!lamin login testuser1
!lamin delete --force mydata
!rm -r ./mydata
✅ logged in with email testuser1@lamin.ai and id DzTjkKse
💡 deleting instance testuser1/mydata
✅     deleted instance settings file: /home/runner/.lamin/instance--testuser1--mydata.env
✅     instance cache deleted
✅     deleted '.lndb' sqlite file
🔶     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata